aDepartment of Epidemiology and Biostatistics, School of Public Health, Hamadan University of Medical Sciences, Hamadan, Iran
bResearch Center for Health Sciences and Department of Epidemiology and Biostatistics, School of Public Health, Hamadan University of Medical Sciences, Hamadan, Iran
cModeling of Noncommunicable Diseases Research Center, Department of Epidemiology and Biostatistics, School of Public Health, Hamadan University of Medical Sciences, Hamadan, Iran
dModeling of Noncommunicable Disease Research Center, Department of Biostatistics and Epidemiology, School of Public Health, Hamadan University of Medical Sciences, Hamadan, Iran
eDepartment of Computer Engineering, Faculty of Engineering, Bu-Ali Sina University, Hamadan, Iran
© 2014 Published by Elsevier B.V. on behalf of Korea Centers for Disease Control and Prevention.
This is an Open Access article distributed under the terms of the CC-BY-NC License (http://creativecommons.org/licenses/by-nc/3.0).
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
No. of samples | Feature selection | Classifier | Measure | Validation method | |
---|---|---|---|---|---|
Current study | 97 | Supervised wavelet | SVM radial kernel | Accuracy: 83.11 | CV |
Supervised PCA | SVM radial kernel | Accuracy: 79.22 | |||
295 | Supervised wavelet | SVM radial kernel | Accuracy: 75.37 | ||
Supervised PCA | SVM linear kernel | Accuracy: 73.03 | |||
286 | Supervised wavelet | SVM linear kernel | Accuracy: 79.21 | ||
Supervised PCA | SVM linear kernel | Accuracy: 76.00 | |||
Michiels et al (2005) [20] | 97 | Correlation | Nearest-centroid | Accuracy: 68.00 | CV |
Peng (2005) [23] | 97 | Signal to noise ratio | SVM | Accuracy: 75.00 | Leave-one-out CV |
Signal to noise ratio | Bagg & Boost SVM | Accuracy: 77.00 | |||
Subsampling | Ensemble SVM | Accuracy: 81.00 | |||
Pochet et al (2004) [24] | 78+19* | None | LS-SVM linear kernel | Accuracy: 69.00 | Leave-one-out CV |
None | SVM RBF kernel | Accuracy: 69.00 | |||
None | SVM linear kernel | Accuracy: 52.00 | |||
Alexe et al (2006) [22] | 78+19 | Support set identified by logical analysis of data | SVM linear kernel | Accuracy: 77.00 | CV |
Artificial NN | Accuracy: 79.00 | ||||
Logistic regression | Accuracy: 78.00 | ||||
Nearest neighbors | Accuracy: 76.00 | ||||
Decision trees (C4.5) | Accuracy: 67.00 | ||||
Jahid et al (2012) [26] | 295 | Steiner tree based method | SVM | Accuracy: 62.00 | CV |
286 | Accuracy: 61.00 | ||||
Chuang et al (2007) [25] | 295 | Subnetwork marker | SVM | Accuracy: 72.00 | CV |
286 | Accuracy: 62.00 | ||||
van Vliet et al (2012) [21] | 295 | Filtering approach (t test) | Nearest mean classifier | AUC: 73.80 | CV |
Dehnavi et al (2013) [27] | 286 | Rough-set theory | Neuro-fuzzy System | Accuracy: 78.00 | 10-fold CV |
Lee et al (2011) [28] | 286 | Modules with condition responsive correlations | Naïve Bayesian classifier | AUC: 0.62 | Leave-one-out CV |
Jahid et al (2014) [29] | 295 | Patient–patient co-expression networks | PC-classifier | AUC: 0.78 | Leave-one-out CV |
Dagging | AUC: 0.72 | ||||
AdaBoost | AUC: 0.66 | ||||
286 | PC-classifier | AUC: 0.68 | |||
Dagging | AUC: 0.61 | ||||
AdaBoost | AUC: 0.55 |
Method | No. of preselected genes. | Method | Accuracy | Sensitivity | Specificity | AUC |
---|---|---|---|---|---|---|
SVM (linear) | 70 genes (van't Veer) | Wavelet (Db1.1) | 77.11 | 78.30 | 76.15 | 77.22 |
Wavelet (Db1.2) | 69.11 | 64.47 | 73.00 | 68.74 | ||
Supervised PCA | 73.77 | 75.72 | 71.84 | 73.78 | ||
SVM (radial) | 70 genes (van't Veer) | Wavelet (Db1.1) | 77.55 | 82.28 | 73.24 | 77.76 |
Wavelet (Db1.2) | 75.66 | 82.20 | 69.76 | 75.98 | ||
Supervised PCA | 71.77 | 71.25 | 72.21 | 71.73 | ||
SVM (sigmoid) | 70 genes (van't Veer) | Wavelet (Db1.1) | 78.88 | 78.57 | 79.18 | 78.87 |
Wavelet (Db1.2) | 71.88 | 74.82 | 69.26 | 72.04 | ||
Supervised PCA | 68.77 | 67.58 | 69.73 | 68.66 | ||
SVM (linear) | 70 genes | Wavelet (Db1.1) | 72.33 | 67.55 | 76.38 | 71.97 |
Wavelet (Db1.2) | 76.44 | 75.53 | 77.24 | 76.38 | ||
Supervised PCA | 74.00 | 72.51 | 75.31 | 73.91 | ||
SVM (radial) | 70 genes | Wavelet (Db1.1) | 82.77 | 90.14 | 74.46 | 82.30 |
Wavelet (Db1.2) | 82.00 | 88.47 | 76.21 | 82.34 | ||
Supervised PCA | 75.88 | 75.22 | 76.52 | 75.87 | ||
SVM (sigmoid) | 70 genes | Wavelet (Db1.1) | 77.44 | 86.74 | 68.93 | 77.84 |
Wavelet (Db1.2) | 77.00 | 82.86 | 71.72 | 77.29 | ||
Supervised PCA | 78.22 | 76.83 | 79.45 | 78.14 | ||
SVM (linear) | q < 0.02 (84 genes) | Wavelet (Db1.1) | 71.00 | 68.40 | 73.09 | 70.75 |
Wavelet (Db1.2) | 72.88 | 72.09 | 73.67 | 72.88 | ||
Supervised PCA | 78.00 | 78.01 | 77.98 | 78.00 | ||
SVM (radial) | q < 0.02 (84 genes) | Wavelet (Db1.1) | 82.55 | 87.55 | 78.21 | 82.88 |
Wavelet (Db1.2) | 81.66 | 84.47 | 79.00 | 81.73 | ||
Supervised PCA | 79.22 | 83.25 | 75.22 | 79.24 | ||
SVM (sigmoid) | q < 0.02 (84 genes) | Wavelet (Db1.1) | 79.88 | 88.17 | 72.53 | 80.35 |
Wavelet (Db1.2) | 78.88 | 86.62 | 70.94 | 78.78 | ||
Supervised PCA | 75.55 | 80.00 | 71.48 | 75.74 | ||
SVM (linear) | q < 0.01 (58 genes) | Wavelet (Db1.1) | 73.77 | 76.62 | 71.34 | 73.98 |
Wavelet (Db1.2) | 70.88 | 67.78 | 73.95 | 70.86 | ||
Supervised PCA | 76.66 | 79.36 | 74.07 | 76.71 | ||
SVM (radial) | q < 0.01 (58 genes) | Wavelet (Db1.1) | 83.11 | 88.27 | 78.63 | 83.45 |
Wavelet (Db1.2) | 82.33 | 85.11 | 79.55 | 82.33 | ||
Supervised PCA | 77.33 | 82.43 | 72.72 | 77.58 | ||
SVM (sigmoid) | q < 0.01 (58 genes) | Wavelet (Db1.1) | 80.66 | 89.69 | 72.51 | 81.10 |
Wavelet (Db1.2) | 80.77 | 85.77 | 76.07 | 80.92 | ||
Supervised PCA | 76.00 | 80.87 | 71.86 | 76.37 |
Method | No. of preselected genes | Method | Accuracy | Sensitivity | Specificity | AUC |
---|---|---|---|---|---|---|
SVM (linear) | 70 genes (van't Veer) | Wavelet (Db1.1) | 65.10 | 38.32 | 77.82 | 58.07 |
Wavelet (Db1.2) | 66.13 | 29.71 | 84.33 | 57.02 | ||
Supervised PCA | 67.00 | 28.55 | 87.38 | 57.97 | ||
SVM (radial) | 70 genes (van't Veer) | Wavelet (Db1.1) | 70.96 | 32.82 | 90.37 | 61.59 |
Wavelet (Db1.2) | 67.96 | 26.37 | 88.64 | 57.50 | ||
Supervised PCA | 65.72 | 18.36 | 91.14 | 54.75 | ||
SVM (sigmoid) | 70 genes (van't Veer) | Wavelet (Db1.1) | 63.17 | 24.70 | 81.82 | 53.26 |
Wavelet (Db1.2) | 64.55 | 19.25 | 88.10 | 53.67 | ||
Supervised PCA | 66.27 | 23.73 | 89.04 | 56.39 | ||
SVM (linear) | 70 genes | Wavelet (Db1.1) | 70.20 | 48.68 | 81.29 | 64.98 |
Wavelet (Db1.2) | 72.65 | 53.08 | 82.52 | 67.80 | ||
Supervised PCA | 69.37 | 45.83 | 81.71 | 63.77 | ||
SVM (radial) | 70 genes | Wavelet (Db1.1) | 71.13 | 36.98 | 88.76 | 62.87 |
Wavelet (Db1.2) | 70.06 | 39.92 | 86.22 | 63.07 | ||
Supervised PCA | 70.10 | 34.41 | 89.37 | 61.89 | ||
SVM (sigmoid) | 70 genes | Wavelet (Db1.1) | 65.79 | 43.03 | 77.08 | 60.06 |
Wavelet (Db1.2) | 63.44 | 44.50 | 73.72 | 59.11 | ||
Supervised PCA | 68.86 | 33.92 | 87.55 | 60.74 | ||
SVM (linear) | q < 0.001 (56 genes) | Wavelet (Db1.1) | 69.68 | 48.65 | 80.87 | 64.76 |
Wavelet (Db1.2) | 67.20 | 41.12 | 80.87 | 60.99 | ||
Supervised PCA | 71.68 | 46.81 | 84.56 | 65.68 | ||
SVM (radial) | q < 0.001 (56 genes) | Wavelet (Db1.1) | 70.37 | 33.90 | 89.40 | 61.65 |
Wavelet (Db1.2) | 65.72 | 28.30 | 86.48 | 57.39 | ||
Supervised PCA | 70.82 | 40.54 | 86.62 | 63.58 | ||
SVM (sigmoid) | q < 0.001 (56 genes) | Wavelet (Db1.1) | 65.79 | 44.68 | 76.53 | 60.60 |
Wavelet (Db1.2) | 66.37 | 41.38 | 79.49 | 60.43 | ||
Supervised PCA | 71.10 | 45.46 | 84.21 | 64.83 | ||
SVM (linear) | q < 0.002 (91 genes) | Wavelet (Db1.1) | 72.37 | 46.50 | 86.00 | 66.25 |
Wavelet (Db1.2) | 70.43 | 80.97 | 57.00 | 67.24 | ||
Supervised PCA | 73.03 | 46.51 | 86.76 | 66.63 | ||
SVM (radial) | q < 0.002 (91 genes) | Wavelet (Db1.1) | 75.37 | 52.85 | 87.21 | 70.03 |
Wavelet (Db1.2) | 74.58 | 49.18 | 86.48 | 67.83 | ||
Supervised PCA | 71.06 | 39.56 | 88.05 | 63.81 | ||
SVM (sigmoid) | q < 0.002 (91 genes) | Wavelet (Db1.1) | 72.44 | 42.36 | 88.01 | 65.19 |
Wavelet (Db1.2) | 74.34 | 47.21 | 88.38 | 67.80 | ||
Supervised PCA | 69.10 | 49.47 | 78.63 | 64.05 |
Method | No. of preselected genes | Method | Accuracy | Sensitivity | Specificity | AUC |
---|---|---|---|---|---|---|
SVM (linear) | 76 genes (Wang) | Wavelet (Db1.1) | 64.42 | 44.42 | 76.25 | 60.33 |
Wavelet (Db1.2) | 66.39 | 44.86 | 79.13 | 61.99 | ||
Supervised PCA | 68.17 | 39.13 | 85.82 | 62.47 | ||
SVM (radial) | 76 genes (Wang) | Wavelet (Db1.1) | 63.89 | 35.74 | 79.77 | 57.75 |
Wavelet (Db1.2) | 65.10 | 28.97 | 87.45 | 58.21 | ||
Supervised PCA | 67.82 | 33.97 | 87.88 | 60.92 | ||
SVM (sigmoid) | 76 genes (Wang) | Wavelet (Db1.1) | 66.92 | 45.49 | 79.66 | 62.58 |
Wavelet (Db1.2) | 65.64 | 43.42 | 79.11 | 61.27 | ||
Supervised PCA | 67.39 | 43.54 | 81.28 | 62.41 | ||
SVM (linear) | 76 genes | Wavelet (Db1.1) | 75.17 | 61.97 | 83.02 | 72.50 |
Wavelet (Db1.2) | 76.35 | 59.94 | 85.99 | 72.96 | ||
Supervised PCA | 67.96 | 42.04 | 83.65 | 62.85 | ||
SVM (radial) | 76 genes | Wavelet (Db1.1) | 76.07 | 60.80 | 84.86 | 72.83 |
Wavelet (Db1.2) | 77.25 | 56.48 | 89.23 | 72.86 | ||
Supervised PCA | 67.32 | 37.17 | 85.37 | 61.27 | ||
SVM (sigmoid) | 76 genes | Wavelet (Db1.1) | 77.21 | 62.41 | 86.10 | 74.26 |
Wavelet (Db1.2) | 71.57 | 61.79 | 77.34 | 69.56 | ||
Supervised PCA | 68.10 | 42.85 | 82.77 | 62.81 | ||
SVM (linear) | q < 0.04 (67 genes) | Wavelet (Db1.1) | 78.21 | 67.05 | 84.60 | 75.83 |
Wavelet (Db1.2) | 79.21 | 64.46 | 87.61 | 76.04 | ||
Supervised PCA | 76.00 | 68.76 | 80.66 | 74.71 | ||
SVM (radial) | q < 0.04 (67 genes) | Wavelet (Db1.1) | 77.00 | 58.65 | 87.56 | 73.10 |
Wavelet (Db1.2) | 75.17 | 54.41 | 88.33 | 71.37 | ||
Supervised PCA | 75.00 | 60.97 | 83.68 | 72.33 | ||
SVM (sigmoid) | q < 0.04 (67 genes) | Wavelet (Db1.1) | 77.03 | 65.75 | 83.54 | 74.65 |
Wavelet (Db1.2) | 78.50 | 66.79 | 85.59 | 76.19 | ||
Supervised PCA | 75.21 | 64.96 | 81.63 | 73.30 | ||
SVM (linear) | q < 0.05 (86 genes) | Wavelet (Db1.1) | 77.00 | 67.04 | 83.02 | 75.03 |
Wavelet (Db1.2) | 78.17 | 65.57 | 85.62 | 75.60 | ||
Supervised PCA | 75.96 | 66.14 | 82.11 | 74.12 | ||
SVM (radial) | q < 0.05 (86 genes) | Wavelet (Db1.1) | 75.96 | 55.15 | 88.20 | 71.68 |
Wavelet (Db1.2) | 76.17 | 53.57 | 89.45 | 71.51 | ||
Supervised PCA | 75.57 | 63.50 | 82.98 | 73.24 | ||
SVM (sigmoid) | q < 0.05 (86 genes) | Wavelet (Db1.1) | 77.32 | 66.18 | 83.91 | 75.04 |
Wavelet (Db1.2) | 74.67 | 59.40 | 83.36 | 71.38 | ||
Supervised PCA | 74.28 | 65.61 | 79.19 | 72.40 |
Method | No. of preselected genes | Wavelet | Accuracy | Sensitivity | Specificity | AUC |
---|---|---|---|---|---|---|
SVM (linear) | 70 genes | Db1. Level 1 | 67.83 | 75.63 | 59.15 | 67.39 |
Db1. Level 2 | 64.33 | 69.45 | 58.82 | 64.13 | ||
SVM (radial) | 70 genes | Db1. Level 1 | 64.50 | 72.47 | 54.94 | 63.71 |
Db1. Level 2 | 67.66 | 67.94 | 67.36 | 67.65 | ||
SVM (sigmoid) | 70 genes | Db1. Level 1 | 65.66 | 72.93 | 58.24 | 65.59 |
Db1. Level 2 | 62.16 | 56.06 | 68.47 | 62.27 | ||
SVM (linear) | q < 0.00 (13 genes) | Db1. Level 1 | 64.00 | 68.81 | 59.34 | 64.07 |
Db1. Level 2 | 61.50 | 53.96 | 69.82 | 61.89 | ||
SVM (radial) | q < 0.003 (13 genes) | Db1. Level 1 | 71.83 | 78.33 | 65.33 | 71.83 |
Db1. Level 2 | 69.00 | 70.16 | 67.86 | 69.01 | ||
SVM (sigmoid) | q < 0.003 (13 genes) | Db1. Level 1 | 70.66 | 65.06 | 76.73 | 70.90 |
Db1. Level 2 | 68.83 | 67.89 | 69.76 | 68.83 |
No. of samples | Feature selection | Classifier | Measure | Validation method | |
---|---|---|---|---|---|
Current study | 97 | Supervised wavelet | SVM radial kernel | Accuracy: 83.11 | CV |
Supervised PCA | SVM radial kernel | Accuracy: 79.22 | |||
295 | Supervised wavelet | SVM radial kernel | Accuracy: 75.37 | ||
Supervised PCA | SVM linear kernel | Accuracy: 73.03 | |||
286 | Supervised wavelet | SVM linear kernel | Accuracy: 79.21 | ||
Supervised PCA | SVM linear kernel | Accuracy: 76.00 | |||
Michiels et al (2005) | 97 | Correlation | Nearest-centroid | Accuracy: 68.00 | CV |
Peng (2005) | 97 | Signal to noise ratio | SVM | Accuracy: 75.00 | Leave-one-out CV |
Signal to noise ratio | Bagg & Boost SVM | Accuracy: 77.00 | |||
Subsampling | Ensemble SVM | Accuracy: 81.00 | |||
Pochet et al (2004) | 78+19* | None | LS-SVM linear kernel | Accuracy: 69.00 | Leave-one-out CV |
None | SVM RBF kernel | Accuracy: 69.00 | |||
None | SVM linear kernel | Accuracy: 52.00 | |||
Alexe et al (2006) | 78+19 | Support set identified by logical analysis of data | SVM linear kernel | Accuracy: 77.00 | CV |
Artificial NN | Accuracy: 79.00 | ||||
Logistic regression | Accuracy: 78.00 | ||||
Nearest neighbors | Accuracy: 76.00 | ||||
Decision trees (C4.5) | Accuracy: 67.00 | ||||
Jahid et al (2012) | 295 | Steiner tree based method | SVM | Accuracy: 62.00 | CV |
286 | Accuracy: 61.00 | ||||
Chuang et al (2007) | 295 | Subnetwork marker | SVM | Accuracy: 72.00 | CV |
286 | Accuracy: 62.00 | ||||
van Vliet et al (2012) | 295 | Filtering approach (t test) | Nearest mean classifier | AUC: 73.80 | CV |
Dehnavi et al (2013) | 286 | Rough-set theory | Neuro-fuzzy System | Accuracy: 78.00 | 10-fold CV |
Lee et al (2011) | 286 | Modules with condition responsive correlations | Naïve Bayesian classifier | AUC: 0.62 | Leave-one-out CV |
Jahid et al (2014) | 295 | Patient–patient co-expression networks | PC-classifier | AUC: 0.78 | Leave-one-out CV |
Dagging | AUC: 0.72 | ||||
AdaBoost | AUC: 0.66 | ||||
286 | PC-classifier | AUC: 0.68 | |||
Dagging | AUC: 0.61 | ||||
AdaBoost | AUC: 0.55 |
AUC = area under the receiver operating characteristic curve; SVM = support vector machine.
AUC = area under the receiver operating characteristic curve; SVM = support vector machine.
AUC = area under the receiver operating characteristic curve; SVM = support vector machine.
AUC = area under the receiver operating characteristic curve; SVM = support vector machine.
AUC = area under the receiver operating characteristic curve; CV = cross validation; PCA = principal component analysis; RBF = radial basic function; SVM = support vector machine.