Skip Navigation
Skip to contents

PHRP : Osong Public Health and Research Perspectives

OPEN ACCESS
SEARCH
Search

Search

Page Path
HOME > Search
5 "multidrug resistance"
Filter
Filter
Article category
Keywords
Publication year
Authors
Funded articles
Original Articles
Prevalence of plasmid-mediated AmpC β-lactamases among uropathogenic Escherichia coli isolates in southwestern Iran
Nabi Jomehzadeh, Khadijeh Ahmadi, Zahra Rahmani
Osong Public Health Res Perspect. 2021;12(6):390-395.   Published online December 1, 2021
DOI: https://doi.org/10.24171/j.phrp.2021.0272
  • 1,827 View
  • 49 Download
AbstractAbstract PDF
Objectives
This study was undertaken to evaluate AmpC β-lactamase-producing Escherichia coli urine isolates and to characterize the frequency of plasmid-mediated AmpC (pAmpC)-encoding genes.
Methods
Antimicrobial susceptibility tests were performed using the disk diffusion technique. AmpC β-lactamase production was assessed with a phenotypic inhibitor-based method. The presence of 6 pAmpC-encoding cluster genes was detected by multiplex polymerase chain reaction (PCR).
Results
The proportion of antibiotic resistance of E. coli isolates ranged from 7.4% to 90.5%, and more than half (51.6%) of the total isolates were multidrug-resistant (MDR). Among the 95 E. coli isolates, 60 (63.2%) were found to be cefoxitin-resistant, but only 14 (14.7%) isolates were confirmed as AmpC β-lactamase-producers. In the PCR assay, pAmpC-encoding genes were found in 15 (15.8%) isolates, and blaDHA was the most prevalent type. However, blaFOX, blaMOX, and blaACC genes were not detected in the isolates.
Conclusion
Our findings contributed valuable information concerning antibiotic resistance, confirmatory phenotypic testing for AmpC production, and pAmpC β-lactamase gene content in E. coli isolates in southwestern Iran. The level of MDR recorded in AmpC-producing strains of this study was worrying; therefore, implementing strong infection control approaches to reduce the MDR burden is recommended.
Characterization of Antimicrobial Susceptibility, Extended-Spectrum β-Lactamase Genes and Phylogenetic Groups of Enteropathogenic Escherichia coli Isolated from Patients with Diarrhea
Erfaneh Jafari, Saeid Mostaan, Saeid Bouzari
Osong Public Health Res Perspect. 2020;11(5):327-333.   Published online October 22, 2020
DOI: https://doi.org/10.24171/j.phrp.2020.11.5.09
  • 4,427 View
  • 74 Download
  • 3 Citations
AbstractAbstract PDF
Objectives

Infectious diarrhea is one of the most common causes of pediatric death worldwide and enteropathogenic Escherichia coli (EPEC) is one of the main causes. There are 2 subgroups of EPEC, typical and atypical, based on the presence or absence of bundle forming pili (bfp), of which atypical EPEC is considered less virulent, but not less pathogenic. Antimicrobial resistance towards atypical EPEC among children is growing and is considered a major problem. In this study the pattern of antibiotic resistance in clinical isolates was determined.

Methods

Using 130 isolates, antibiotic resistance patterns and phenotypes were assessed, and genotypic profiles of extended spectrum β-lactamase (ESBL) production using disc diffusion and PCR was carried out. Phylogenetic groups were analyzed using quadruplex PCR.

Results

There were 65 E. coli isolates identified as atypical EPEC by PCR, among which the highest antibiotic resistance was towards ampicillin, followed by trimethoprim-sulfamethoxazole, and tetracycline. Multidrug resistance was detected in 44.6% of atypical EPEC isolates. Around 33% of isolates were determined to be extended spectrum β-lactamase producers, and in 90% of isolates, genes responsible for ESBL production could be detected. Moreover, the majority of atypical EPEC strains belonged to Group E, followed by Groups B1, B2 and C.

Conclusion

High rates of multidrug resistance and ESBL production among atypical EPEC isolates warrant periodical surveillance studies to select effective antibiotic treatment for patients. It is considered a critical step to manage antibiotic resistance by avoiding unnecessary prescriptions for antibiotics.

High Prevalence of Class 1 to 3 Integrons Among Multidrug-Resistant Diarrheagenic Escherichia coli in Southwest of Iran
Mohammad Kargar, Zahra Mohammadalipour, Abbas Doosti, Shahrokh Lorzadeh, Alireza Japoni-Nejad
Osong Public Health Res Perspect. 2014;5(4):193-198.   Published online August 31, 2014
DOI: https://doi.org/10.1016/j.phrp.2014.06.003
  • 1,713 View
  • 21 Download
  • 27 Citations
AbstractAbstract PDF
Objectives
Horizontal transfer of integrons is one of the important factors that can contribute to the occurrence of multidrug-resistant (MDR) bacteria. This study aimed to determine the prevalence of integrons among MDR Escherichia coli strains isolated from stool specimens and investigate the associations between the existence of integrons and MDR properties in the southwest of Iran.
Methods
There were 164 E. coli strains isolated from January 2012 to June 2012. Fecal specimens identified as E. coli by the conventional methods. Subsequently the antibiotic resistance was assessed using Clinical and Laboratory Standard Institute criteria. The presence of class 1–3 integrons and embedded gene cassettes was verified using specific primers by multiplex polymerase chain reaction assay.
Results
Among a total of 164 studied samples, 69 (42.07%) isolates were multidrug resistant. Class 1 and class 2 integrons were present in 78.26% and 76.81% MDR isolates, respectively. For the first time in Iran, class 3 integron was observed in 26.09% MDR isolates. Significant correlations were identified between: class 1 integron and resistance to amikacin, gentamicin, chloramphenicol, ampicillin, tetracycline, nalidixic acid, and co-trimoxazole; class 2 integron and resistance to aminoglycosides, co-trimoxazole, cefalexin, ampicillin, and chloramphenicol; and class 3 integron and resistance to gentamicin, kanamycin, and streptomycin.
Conclusion
Our results indicate that integrons are common among MDR isolates and they can be used as a marker for the identification of MDR isolates. Therefore, due to the possibility of a widespread outbreak of MDR isolates, molecular surveillance and sequencing of the integrons in other parts of the country is recommended.
In Vitro Antibacterial Efficacy of 21 Indian Timber-Yielding Plants Against Multidrug-Resistant Bacteria Causing Urinary Tract Infection
Monali P. Mishra, Rabindra N. Padhy
Osong Public Health Res Perspect. 2013;4(6):347-357.   Published online December 31, 2013
DOI: https://doi.org/10.1016/j.phrp.2013.10.007
  • 1,479 View
  • 11 Download
  • 17 Citations
AbstractAbstract PDF
Objectives
To screen methanolic leaf extracts of 21 timber-yielding plants for antibacterial activity against nine species of uropathogenic bacteria isolated from clinical samples of a hospital (Enterococcus faecalis, Staphylococcus aureus, Acinetobacter baumannii, Citrobacter freundii, Enterobacter aerogenes, Escherichia coli, Klebsiella pneumoniae, Proteus mirabilis, and Pseudomonas aeruginosa).
Methods
Bacterial strains were subjected to antibiotic sensitivity tests by the Kirby–Bauer's disc diffusion method. The antibacterial potentiality of leaf extracts was monitored by the agar-well diffusion method with multidrug-resistant (MDR) strains of nine uropathogens.
Results
Two Gram-positive isolates, E. faecalis and S. aureus, were resistant to 14 of the 18 antibiotics used. Gram-negative isolates A. baumannii, C. freundii, E. aerogenes, E. coli, K. pneumoniae, P. mirabilis, and P. aeruginosa were resistant to 10, 12, 9, 11, 11, 10, and 11 antibiotics, respectively, of the 14 antibiotics used. Methanolic leaf extracts of Anogeissus acuminata had the maximum zone of inhibition size—29 mm against S. aureus and 28 mm against E. faecalis and P. aeruginosa. Cassia tora had 29 mm as the zone of inhibition size for E. faecalis, E. aerogenes, and P. aeruginosa. Based on the minimum inhibitory concentration and minimum bactericidal concentration values, the most effective 10 plants against uropathogens could be arranged in decreasing order as follows: C. tora > A. acuminata > Schleichera oleosa > Pterocarpus santalinus > Eugenia jambolana > Bridelia retusa > Mimusops elengi > Stereospermum kunthianum > Tectona grandis > Anthocephalus cadamba. The following eight plants had moderate control capacity: Artocarpus heterophyllus, Azadirachta indica, Dalbergia latifolia, Eucalyptus citriodora, Gmelina arborea, Pongamia pinnata, Pterocarpus marsupium, and Shorea robusta. E. coli, followed by A. baumannii, C. freundii, E. aerogenes, P. mirabilis, and P. aeruginosa were controlled by higher amounts/levels of leaf extracts. Phytochemicals of all plants were qualitatively estimated.
Conclusions
A majority of timber-yielding plants studied had in vitro control capacity against MDR uropathogenic bacteria.
Articles
Comparison of Antimicrobial Resistance in Escherichia coli Strains Isolated From Healthy Poultry and Swine Farm Workers Using Antibiotics in Korea
Seung-Hak Cho, Yeong-Sik Lim, Yeon-Ho Kang
Osong Public Health Res Perspect. 2012;3(3):151-155.   Published online June 30, 2012
DOI: https://doi.org/10.1016/j.phrp.2012.07.002
  • 1,412 View
  • 19 Download
  • 20 Citations
AbstractAbstract PDF
Objectives
The aim of this study is to compare the antibiotic resistance of Escherichia coli isolates from faecal samples of workers who often use antibiotics.
Methods
A total of 163E coli strains isolated from faecal samples of livestock workers (poultry and swine farm workers) and restaurant workers in the same regions as a control group were analyzed by agar disc diffusion to determine their susceptibility patterns to 16 antimicrobial agents.
Results
Most of the tested isolates showed high antimicrobial resistance to ampicillin and tetracycline. The isolates showed higher resistance to cephalothin than other antibiotics among the cephems. Among the aminoglycosides, the resistance to gentamicin and tobramycin occurred at higher frequencies compared with resistance to amikacin and netilmicin. Our data indicated that faecal E coli isolates of livestock workers showed higher antibiotic resistances than nonlivestock workers (restaurant workers), especially cephalothin, gentamicin, and tobramycin (p < 0.05). Moreover, the rates of the livestock workers in the association of multidrug resistance were also higher than the rates of the restaurant workers.
Conclusion
This study implies that usage of antibiotics may contribute to the prevalence of antibiotic resistance in commensal E coli strains of humans.

PHRP : Osong Public Health and Research Perspectives