Skip Navigation
Skip to contents

PHRP : Osong Public Health and Research Perspectives

OPEN ACCESS
SEARCH
Search

Author index

Page Path
HOME > Articles and issues > Author index
Search
Hyungjun Kim 3 Articles
Resistance to Fluoroquinolone by a Combination of Efflux and Target Site Mutations in Enteroaggregative Escherichia coli Isolated in Korea
Jun-Young Kim, Se-Mi Jeon, Hyungjun Kim, Nara Lim, Mi-Sun Park, Seong-Han Kim
Osong Public Health Res Perspect. 2012;3(4):239-244.   Published online December 31, 2012
DOI: https://doi.org/10.1016/j.phrp.2012.11.002
  • 1,692 View
  • 15 Download
  • 8 Citations
AbstractAbstract PDF
Objectives
Enteroaggregative Escherichia coli (EAEC) was recently reported as a major diarrheagenic pathogen in infant and adult travelers, both in developing and developed countries. EAEC strains are known to be highly resistant to antibiotics including quinolones. Therefore in this study we have determined the various mechanisms of quinolone resistance in EAEC strains isolated in Korea.
Methods
For 26 EAEC strains highly resistant to fluoroquinolone, minimal inhibitory concentrations for fluoroquinolones were determined, mutations in the quinolone target genes were identified by PCR and sequencing, the presence of transferable quinolone resistance mechanism were identified by PCR, and the contribution of the efflux pump was determined by synergy tests using a proton pump inhibitor. The expression levels of efflux pump-related genes were identified by relative quantification using real-time PCR.
Results
Apart from two, all tested isolates had common mutations on GyrA (Ser83Leu and Ser87Gly) and ParC (Ser80Gln). Isolates EACR24 and EACR39 had mutations that have not been reported previously: Ala81Pro in ParC and Arg157Gly in GyrA, respectively. Increased susceptibility of all the tested isolates to ciprofloxacin and norfloxacin in the presence of the pump inhibitor implies that efflux pumps contributed to the resistance against fluoroquinolones. Expression of the efflux pump-related genes, tolC, mdfA, and ydhE, were induced in isolates EACR 07, EACR 29, and EACR 33 in the presence of ciprofloxacin.
Conclusion
These results indicate that quinolone resistance of EAEC strains mainly results from the combination of mutations in the target enzyme and an increased expression of efflux pump-related genes. The mutations Ala81Pro in ParC and Arg157Gly in GyrA have not been reported previously the exact influence of these mutations should be investigated further.
Multiplex Real-Time Polymerase Chain Reaction-Based Method for the Rapid Detection of gyrA and parC Mutations in Quinolone-Resistant Escherichia coli and Shigella spp.
Junyoung Kim, Semi Jeon, Hyungjun Kim, Misun Park, Soobok Kim, Seonghan Kim
Osong Public Health Res Perspect. 2012;3(2):113-117.   Published online June 30, 2012
DOI: https://doi.org/10.1016/j.phrp.2012.04.004
  • 1,806 View
  • 14 Download
  • 5 Citations
AbstractAbstract PDF
Two real-time polymerase chain reaction assays were developed to detect mutations in codons 83 and 87 in gyrA and in codons 80 and 91 in parC, the main sites that causes quinolone resistance in pathogenic Escherichia coli and Shigella spp. isolates. These assays can be employed as a useful method for controlling infections caused by quinolone-resistant E coli and Shigella isolates.
A Contribution of MdfA to Resistance to Fluoroquinolones in Shigella flexneri
Jun-Young Kim, Se-Mi Jeon, Hyungjun Kim, Mi-Sun Park, Seong-Han Kim
Osong Public Health Res Perspect. 2011;2(3):216-217.   Published online December 31, 2011
DOI: https://doi.org/10.1016/j.phrp.2011.11.049
  • 1,637 View
  • 16 Download
  • 7 Citations
AbstractAbstract PDF
In this study, we measured the drug resistance conferred by mdfA mutations in two Shigella flexneri strains. A mutant in mdfA genes was constructed by polymerase chain reaction–based, one-step inactivation of chromosomal genes. The antimicrobial susceptibility of parent and mutant strains to fluoroquinolones was determined by minimal inhibitory concentration (MICs). The △mdfA mutants were somewhat more susceptible to fluoroquinolones than the parent strains. The low level changes in MICs of the △mdfA mutants suggest that mdfA contributed the fluoroquinolone resistance in S flexneri. This finding found that the increased expression level of an MdfA efflux pump mediated fluoroquinolone resistance, but it is not likely a major effecter of higher resistance levels.

PHRP : Osong Public Health and Research Perspectives