
Received: May 21, 2022 
Revised: September 20, 2022 
Accepted: October 11, 2022  

Corresponding author: 
Hassan Karami 
Department of Virology, School 
of Public Health, Tehran 
University of Medical Sciences, 
Poursina Avenue, Qods Street, 
Enqelab Square, Tehran, Iran 
E-mail: Karami.hassan.2022@
gmail.com 

SARS-CoV-2 in brief: from virus to prevention  
Hassan Karami1 , Zeinab Karimi1 , Negin Karami2  
1Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran 
2Department of Nursing, School of Nursing, Alborz University of Medical Sciences, Karaj, Iran 

ABSTRACT

The recent outbreak of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a 
highly transmissible virus with a likely animal origin, has posed major and unprecedented 
challenges to millions of lives across the affected nations of the world. This outbreak first 
occurred in China, and despite massive regional and global attempts shortly thereafter, it 
spread to other countries and caused millions of deaths worldwide. This review presents key 
information about the characteristics of SARS-CoV-2 and its associated disease (namely, 
coronavirus disease 2019) and briefly discusses the origin of the virus. Herein, we also briefly 
summarize the strategies used against viral spread and transmission. 
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Introduction 

Coronaviruses (CoVs) are classic, small infectious agents in both humans and animals [1]. 
Belonging to the family of Coronaviridae in the order Nidovirales, these viruses are divided 
into 2 subfamilies (Orthocoronavirinae and Torovirinae) [1]. Having 4 distinct genera in 4 
major subclades, the subfamily of Orthocoronavirinae is classified into alpha (α)-CoVs and 
beta (β)-CoVs (both are infectious for mammals), as well as gamma (γ)-CoVs (infectious for 
birds), and delta (δ)-CoVs (infectious for mammals and birds) sharing remarkable interspecies 
similarities; however, differences in some features such as genome composition, transmission, 
pathogenicity, and associated diseases are notable (Figure 1) [1,2]. Before December 2019, 6 
pathogenic CoVs had been identified as causing mild to severe human respiratory infections. 
Of these, 4 viruses were low-pathogenic (HCoV-OC43, HCoV-NL63, HCoV-HKU1, and HCoV-
229E) associated with mild infections, and 2 viruses (severe acute respiratory syndrome 
coronavirus 1 [SARS-CoV-1; 2002–2003, Foshan in China] and Middle East respiratory 
syndrome coronavirus [MERS-CoV; 2012, Arabian Peninsula]) were highly pathogenic and 
linked to severe acute respiratory syndrome [3–5]. 

On December 31, 2019, the World Health Organization (WHO) received an alert from China 
and was informed of a cluster of unexplained pneumonia [6]. A week later, a new strain of CoV 
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was detected and subsequently announced by officials of 
the same organization [6]. Soon after, the WHO and the 
International Committee on Taxonomy of Viruses chose, 
respectively, the names 2019 novel coronavirus (2019-
nCoV) and SARS-CoV-2 for the newly isolated virus [7]. 
Historically, SARS-CoV-2 was found after an outbreak of an 
unknown airway infectious disease in the city of Wuhan, 
China [6]. Shortly afterward, the outbreak made headlines 
in both regional and global news in early 2020 and plunged 
the world into a state of concern, and was, in fact, the 
beginning of a health crisis on a worldwide scale. Due to 
its rapid spread, the outbreak was declared a public health 
emergency of international concern and was deemed to 
constitute a global pandemic on January 30, 2020 and 
March 11, 2020, respectively [8]. 

SARS-CoV-2 is the latest infectious CoV to be identified 
in humans; it causes mildly symptomatic disease in about 
80% of infected cases, but adverse outcomes are also 
predictable in the 15% and 5% of patients who develop 
severe and critical disease, respectively [9]. As of September 
21, 2022, there have been more than 618 million confirmed 
coronavirus disease 2019 (COVID-19) cases, more than 6.5 
million deaths, and nearly 600 million recoveries worldwide 
(https://www.worldometers.info/coronavirus/). To control 
the transmission of COVID-19 and curtail the associated 
infections, we should enhance our knowledge regarding 
the characteristics and origin of SARS-CoV-2, as well as the 
mechanisms underlying the associated disease. There is 
also a need to focus on interventions to reduce the rate of 

viral transmission, infection, and death. 

The Virus: Structure, Genetics, Variants 

Morphologically, early microscopic observations found the 
SARS-CoV-2 virion as a pleomorphic, rounded, and crown-
shaped particle measuring 60 to 140 nm in diameter [10]. 
This virus contains a helical nucleocapsid protein that 
directly interacts with an intraparticle genomic nucleic acid 
as a complex of ribonucleoprotein, which are surrounded 
by a double-layered lipid originally derived from the 
membrane of infected cells [11]. In addition, the outer 
membrane of infectious viruses contains several projected 
proteins (referred to as spike proteins), which are 9 to 12  
nm in diameter (Figure 2) [10]. 

Like other CoVs, SARS-CoV-2 has a capped and polyadenylated,  
large, constant, single, and positive-sense ribonucleic acid 
organized in a specific order into different gene sequences 
responsible for 3 general types of functional proteins 
[12]. The SARS-CoV-2 RNA encodes at least 29 different 
functional proteins essential for viral replication, infectivity, 
immunomodulation, and future therapeutic and vaccine 
research [13]. The genome of SARS-CoV-2 contains 2 
overlapping regions (open reading frame-1a [ORF1a] and ORF1b) 
encoding 16 non-structural proteins (NSP1-16). In addition, 
it encodes 4 structural proteins (spike [S], envelope [E], 
membrane [M], and helical nucleocapsid [N]) and a set of 
accessory proteins (ORF3, ORF6, ORF7, ORF8, ORF9, ORF10) 
with a variable length, ranging from 13 amino acids to 1945 
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Figure 1. Classification of coronaviruses (CoVs). Based on [1].
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amino acids for NSP11 and NSP3, respectively (Figure 2) 
[13,14]. 

The nucleic acid sequence of SARS-CoV-2, with a high 
sequence identity, is closely related to bat coronavirus 
RaTG13 (96.10%), RpYN06 (94.48%), RmYN02 (93.30%), SARS 
-like-CoVZC45 (87.60%), SARS-like-CoVZXC21 (87.40%), 
SARS-CoV-1 (79.6%), and MERS-CoV (50%) [15–17]. Despite 
these similarities, SARS-CoV-2 differs from SARS-CoV-1 
genetically. For instance, in SARS-CoV-2, ORF8b is longer (37 
amino acids) and ORF3b is shorter (132 amino acids) than 
in SARS-CoV-1. In addition, there are no genes encoding 
either ORF8a or hemagglutinin esterase in SARS-CoV-2 
[18,19]. 

The genome of SARS-CoV-2 undergoes variation, deletion, 
insertion, and broad mutations (estimated approximately 
1×10−3 substitutions per year) leading to the emergence 
of new lineages/variants with new viral and infectious 
characteristics [20]. To date, 3 classifications—variant of 
concern (VOC), variant of interest (VOI), and variant under 
monitoring (VUM)—have been introduced for variants of 
SARS-CoV-2. The first term (VOC) refers to variants with 
high transmissibility that can be highly virulent, with a 
negative impact on vaccine efficiencies and therapeutic 
prospects [21]. Currently, these variants are challenging 
to human health. The second term (VOI) denotes variants 
that harbor genetic mutations predicted to have an impact 
on viral transmissibility and disease severity [22]. The last 
term (VUM) refers to variants that are genetically changed 
and are likely to pose a threat in the future due to their 

unknown phenotypic or epidemiological effects [21]. Lists of 
variants, countries, and selected virus spike mutations are 
summarized in Table 1. 

Origin 

The recent literature still contains no clear data to answer 
the question of whether SARS-CoV-2 is a natural or man-
made virus; however, research on this mysterious topic is 
still being undertaken. Almost all human CoVs are thought to 
be of animal origin, as these viruses can spread to humans by 
cross-species transmission [23]. The SARS-CoV-2 pandemic 
seems to have started in the Wuhan wet market in China, 
where different kinds of animals were traded [24]. Bats 
and pangolins are likely the natural hosts of SARS-CoV-2 
[25,26]. However, for more than 2 years before the start 
of the current pandemic, those animals were not for 
sale in the Wuhan wet market [24]. Therefore, additional 
hosts (reservoirs and intermediate ones) may need to be 
identified through further investigations. 

To date, different scenarios have been described regarding 
the origin of SARS-CoV-2. In this context, 2 scenarios (zoonotic 
and laboratory origin) are thought to be more likely than the 
others. Briefly, the first one is supported by genomic data 
showing the same mutations in 6 residues of viral receptor-
binding domains (RBDs) in both SARS-CoV-2 and pangolin-
derived CoVs, suggesting the appearance of natural selection 
in pangolins before its transfer to humans [27]. In addition, 
the spike protein of SARS-CoV-2 includes a furin polybasic 
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Figure 2. Virion structure and genomic organization of severe acute respiratory syndrome coronavirus 2.
ORF, open reading frame; S, spike; E, envelope; M, membrane; N, nucleocapsid.
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cleavage site and o-linked glycans, which both seem to have 
been naturally generated, likely through immunity-induced 
pressure [27]. 

In contrast to the natural selection scenario, it has been 
assumed that SARS-CoV-2 was artificially synthesized 
under controlled conditions by a combination of RaTG13 
-like and MP789- like CoVs [28]. This assumption was 
discussed in a recently published letter. In this letter, no 
sufficient data were provided in favor of the man-made 
origin of SARS-CoV-2 [29]. In another claim, SARS-CoV-2 was 
stated to be a recombinant virus having an inserted fragment 
(1,387 bp) corresponding to the viral spike protein; however, 
this statement was soon refuted by a group of researchers 
who found that this sequence was not unique to SARS-
CoV-2, since other CoVs clearly showed the same genetic 
pattern in their spike proteins [30]. However, on March 30, 
2021, a group of experts reported that although laboratory 
leakage could possibly have occurred, for SARS-CoV-2, it is 
an “extremely unlikely” route [31]. In general, more studies 

should be done to find a definitive answer to the question of 
whether SARS-CoV-2 is a naturally selected or laboratory-
generated/leaked virus. 

Transmission 

It is well-established that being unprotected and close to 
a person infected with SARS-CoV-2 regardless of whether 
he or she is symptomatic or not, increases the risk of viral 
transmission, especially in communities with high levels 
of interpersonal contact [6,32]. This mode of transmission 
(interpersonal transmission) which was first confirmed 
on January 20, 2020, highlights the importance of taking 
appropriate precautions when attending public gatherings 
outside the home [8]. Horizontally, expiratory activities 
generate up to a few million droplets of oral fluids with 
sizes of < 1 to 1,000 µm [33,34]. Large droplets (60–100 µm) 
are formed and expelled into the air primarily by defensive 
reflexes of the respiratory system, which throw virus-laden 

Table 1. Overview of SARS-CoV-2 variants

Classification Pango  
lineage

WHO  
label First identification The most-affected  

countries (selected) Spike mutations (selected)

Variant of concern B.1.1.7 Alpha 2020, UK UK, USA, Germany, Sweden, 
Denmark

N501Y, A570D, D614G, P681H, 
T716I, S982A, D1118H

B.1.351 Beta 2020, South Africa South Africa, Philippines, USA, 
Sweden, Germany

D80A, D215G, K417N, E484K, 
N501Y, D614G, A701V

P.1 Gamma 2020, Brazil Brazil, USA, Chile, Argentina L18F, T20N, P26S, D138Y, R190S, 
K417N/T, E484K, N501Y, D614G, 
H655Y, T1027I, V1176F

B.1.617.2 Delta 2020, India USA, India, UK, Turkey, Germany T19R, R158G, L452R, T478K, 
D614G, P681R, D950N

B.1.1.529 Omicron 2021, South Africa UK, USA, Denmark, Germany, 
Brazil

G339D, S373P, K417N, N440K, 
G446S, S477N, T478K, E484A, 
G496S, Q498R, Y505H, T547K, 
D614G, H655Y, P681H, N764K, 
N856K, Q954H, N969K

Variant of interest 
and variant under 
monitoring

B.1.1.1.37 Lambda 2020, Peru Peru, Chile, Argentina, USA, 
Ecuador

G75V, T76I, L452Q, F490S,  
D614G, T859N

P.3 Theta 2021, Philippines Philippines E484K, N501Y, P681H, D614G, 
E1092K, H1101Y, V1176F

P.2 Zeta 2020, Brazil Brazil, USA, Canada, Argentina, 
Paraguay

E484K, D614G, V1176F

B.1.427/B.1.429 Epsilon 2020, USA USA, Mexico, Canada S13I, W152C, L452R, D614G
B.1.525 Eta 2020, Worldwide Canada, USA, Germany, France, 

Denmark
A67V, E484K, D614G, Q677H, 

F888L
B.1.526 Lota 2020, USA USA, Ecuador, Canada, Puerto 

Rico
T95I, D253G, D614G

B.1.617.1 Kappa 2021, India India, Ireland, Canada, UK, USA G142D, E154K, L452R, E484Q, 
D614G, P681R, Q1071H

Sources: https://cov-lineages.org and https://viralzone.expasy.org.
SARS-CoV-2, severe acute respiratory syndrome coronavirus 2; WHO, World Health Organization.
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liquid particles up to a distance of approximately 1 meter 
for exhalation to 2 meters for coughing and 6 meters for 
sneezing within 0.12 to 1 second in a velocity of 1 to 50 m/s 
[33]. 

SARS-CoV-2 is a contagious virus and, indeed, what has 
made this virus a more transmissible CoV strain than SARS-
CoV-1 and MERS-CoV might be the number of detectable 
viruses which are shed outside the mouse/nose [34]. SARS-
CoV-2-laden aerosols suspended in the air were found 
to travel for distances up to 4 meters and are similarly 
infectious to SARS-CoV-1 at a median interval of an hour 
after generation, increasing the likelihood of infection if 
inhaled or deposited on the mucosa [32,35,36]. Being in an 
enclosed environment (i.e., restaurants, classrooms, gyms, or 
prisons) where there is no proper or poor air circulation may 
facilitate the virus spread, increasing the risk of interhuman 
viral infection [37]. Although the minimum number of virions 
required to start an infection has not been reported, early 
studies estimated that around 100 infectious particles are 
enough to infect those who are not appropriately protected 
against viral transmission [38]. 

In indirect transmission, SARS-CoV-2 may spread through 
inanimate surfaces. This may occur through touching 
cross-contaminated or directly contaminated commonly 
used objects [39,40]. However, this mode of transmission is 
considered less important than direct contact for viral spread 
and transmission [41]. Nonetheless, various environmental 
conditions such as the level of light, pH, ultraviolet irradiation, 
temperature, and humidity need to be set to find how 
much these parameters affect the stability of the virus on 
contaminated surfaces. In addition to all the above routes, 
infection may also occur by exposure to virus-containing 
non-respiratory biofluids since molecular detection has 
confirmed the presence of viral nucleic acid in human body 
fluids such as breast milk, amniotic fluid, blood products, 
sexual secretions, and urinary and gastrointestinal excretions 
in SARS-CoV-2-infected individuals [42–45]. This raises 
concerns regarding additional modes of virus transmission. 

Infection Mechanisms 

Basic information exists on the pathogenic mechanisms of 
SARS-CoV-2 and the mechanisms underlying the progression 
of the disease to unfavorable outcomes. SARS-CoV-2 encodes 
a trimeric, mutable, and surface class I viral fusion protein 
called the S glycoprotein, which consists of S1 (binding) and 
S2 (anchoring) subunits associated together non-covalently 
[46]. The S1 subunit harbors a functional and antigenic 
domain called the RBD, which is responsible for receptor 
engagement in virus-cell interaction, whereas S2 fuses 

viral and cell membranes to help the virus enter the cell 
[46]. The spike protein of SARS-CoV-2 is remarkably similar 
(approximately 78% identity in amino acid sequences) to 
its equivalent presented on the SARS-CoV-1 membrane 
[47]. SARS-CoV-2 is a novel airway-associated infectious 
agent that primarily affects the host respiratory system and 
likely exhibits systemic involvement with non-respiratory 
systems due to its broad tissue tropism explained by the wide 
expression pattern of angiotensin-converting enzyme-2 
(ACE-2) as the predominant cellular receptor (also for SARS-
CoV-1) and its co-expressed molecule, the transmembrane 
serine protease 2, as a cellular and spike priming protease 
[48,49]. These molecules mediate the virus attachement 
penetration through the endocytic pathway, which is 
followed by key replicative steps that eventually form viral 
particles and lead to the release of new infectious particles 
out of the infected cell (Figure 3) [14]. For SARS-CoV-2, 
additional and alternative molecules have recently been 
proposed to serve as entry mediators [46,50,51]. In contrast 
to ACE-2, dipeptidyl-peptidase 4 and aminopeptidase N are 
often utilized by MERS-CoV and HCoV-229E, respectively, 
to invade the cells of choice [46]. 

As mentioned above, SARS-CoV-2 is a respiratory virus, 
meaning that the respiratory system might be the primarily 
affected organ system during infection [52]. Following the 
inhalation of virus-laden particles, the infection begins by 
attacking the epithelium of the respiratory tract primarily 
via targeting nasal multiciliated and sustentacular cells 
as well as oral glands, and mucous membranes enriched 
by cell-associated SARS-CoV-2 entry molecules [53–56]. 
Inside invaded cells, the viruses are sensed via cytoplasmic 
recognition molecules, which result in interferon (IFN)-
mediated innate immune responses derived from the 
activation of IFN regulatory factors 3 and 7 (IRF3 and IRF7) 
[51]. 

As shown in Figure 4, by reaching the lower airway 
(alveoli) through the conducting airways, SARS-CoV-2 
preferentially invades alveolar epithelial type II cells, 
allowing the virus to efficiently replicate, making more 
viruses and infect more cells [6]. Upon cell entry and 
virus replication, the activation of pattern recognition 
receptors and inflammatory signaling pathways initially 
results in cytokine and chemokine production [57]. 
However, SARS-CoV-2 has evolved to interfere with 
these intracellular recognition pathways [58]. When they 
fill the alveolar lumen, these inflammatory mediators 
mediate the recruitment of a subset of mono- and poly-
morphonuclear blood cells into the site of infection, where 
the immune system responds to viruses that have entered 
[59]. The attracted leukocytes, predominantly monocyte-
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derived macrophages, contribute to the enhancement of 
host immune responses characterized by uncontrolled 
and storm-like cytokine activity [6,60]. The excessive 
release of cytokines results in capillary permeability and 
plasma leakage, and it also promotes further pulmonary 
inflammation and tissue injuries, which are associated 
with virus-induced acute respiratory distress syndrome, 
characterized by hypoxemia (impaired oxygenation) 
and organ deprivation of respiratory gases [9,61,62]. 
Furthermore, activated resident (e.g., macrophages) or 
recruited (e.g., neutrophils) immune cells contribute to 
injuries of both pneumocytes and endothelial barriers 
by inducing reactive molecules, which also play a role 
in defective T cell-mediated antiviral immunity [61,63]. 
SARS-CoV-2 induces neutrophil  extracellular trap 
formation, which favors further inflammation triggered  
by macrophage-derived inflammatory cytokines [64]. The 
inflammation and alveolar injuries are also triggered by 
the rapid degranulation of mast cells, which are known as 
tissue-resident inflammation regulators cells [65]. SARS-
CoV-2-infected cases whose lungs are seriously involved 
are at risk of alveolar collapse due to the loss of or low 
concentration of surfactant [66]. In these patients, hyaline 
membrane and intracapillary microthrombus formation 
are also expected [6]. Severe SARS-CoV-2 infection is also 
marked by impaired cell-mediated immunity, characterized 
by a numerical reduction (so-called lymphopenia) in the 
number of CD4+ and CD8+ T cells, Tregs, and γδ T cells and 
the functional exhaustion of peripheral PD-1+ and Tim-3+ 
expressing lymphocytes [64,67]. 

As a pathophysiological mechanism, since the infection 
presents extrapulmonary manifestations, SARS-CoV-2 can 
infect cells outside the respiratory system, likely through 
hematogenous spread, leaving lesions in infected tissues 
and body organs [68]. 

Clinical Manifestations 

COVID-19 is a multifaceted and, more accurately, a 
multiphasic disease. While the entire course of the disease 
involves no or mild symptoms in most cases, severe to 
critical infections determined by organ involvement and the 
corresponding spectrum of clinical manifestations should 
also clinically be considered in a subset of SARS-CoV-2-
infected individuals [8,69,70]. COVID-19 is a life-threatening 
disease, as it may lead to death at a median of 2 weeks 
after symptom onset; however, dying from the disease is 
relatively uncommon overall (case fatality rate, 1%) and 

most patients recover completely [8,56,71]. In this context, 
underlying comorbidities, such as non-communicable 
diseases, are among the risk factors for adverse outcomes 
such as hospitalization and death [72]. It was recently 
estimated that 84.1% of deaths due to COVID-19 occurred in 
patients with at least 1 medical condition [73]. Sex and age 
differences also affect the outcomes of infection in a non-
favorable fashion [64]. 

Through close and unprotected contact with confirmed 
patients, a symptomatic infection may develop within a 
week (median incubation period: 4 to 5 days) after virus 
exposure [56]. In early 2020, a brief report was published 
from a series of pneumonia patients who were clinically 
diagnosed with fever, cough, and chest discomfort [10]. 
Similar to the clinical pictures of other CoVs, the symptoms 
of COVID-19 may present in a combined pattern based 
on the disease severity [74]. Children with COVID-19 were 
found to be less likely to develop fever as a symptom of 
infection than adults [75]. A recent meta-analysis found 
medium-grade fever (ranging from 38.1°C to 39.0°C) in the 
majority of included patients, independent of the disease 
severity [75]. This symptom may last for 10 days on average 
in some hospital-admitted patients [76]. In these patients, 
the need for health care services may be associated with 
fever duration [77]. In the early stages of the disease, when 
the infection is mild, patients with acute SARS-CoV-2 
infection may complain of muscle pain, headache, diarrhea, 
and most importantly, respiratory symptoms including 
nasal and throat congestion, coughing, rhinorrhea, sore 
throat, and shortness of breath at varying prevalence rates 
[78,79]. 

As the disease progresses, the clinical symptoms show 
a moderate picture of severity approximately 1 week after 
symptom onset [56]. During this time, fever and coughing 
are likely to persist and breathlessness, tachypnea, 
moderate pneumonia, and abnormalities on chest computed 
tomography may manifest [78,80]. Coughing is a common 
sign that acutely presents in a non-productive pattern with 
no sputum production in the early days after illness onset, 
but as the disease progresses, the pattern changes to being 
productive [79]. In some patients, the infection is clinically 
characterized by severe and critical manifestations. In this 
stage, the infection towards organ dysfunction and failure, 
tissue injuries, severe pneumonia and dyspnea, hypoxia, 
cyanosis, and sepsis [78,80]. Symptomatic COVID-19 patients 
may also exhibit a variety of systemic symptoms, which 
are explained by the multiorgan involvement of the viral 
infection. 
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Long COVID 

The term “long COVID,” also known as “post-COVID-19 
symptoms,” refers to a syndrome experienced by a subset 
(80%) of patients with a history of probable or confirmed 
COVID-19 who continue to experience for a long time 
(i.e., weeks after the acute infection) persistent symptoms 
(physical, mental, and/or cognitive symptoms) with no 
alternative diagnosis or explanation [81,82]. This syndrome 
is highly prevalent within the first 11 weeks after the onset 
of the disease, has a relapsing-remitting nature, and is not 
specific to SARS-CoV-2, since infection with other CoVs such 
as SARS-CoV-1 and MERS-CoV has been reported to have 
similar outcomes [82,83]. Long COVID appears to occur more 
likely in smokers, females, adults aged > 35 years, those 
experiencing socioeconomic deprivation, patients with 
blood type A, people of White race, those who experienced 
hospital admission at the time of acute infection, patients 
with co-morbid conditions (e.g., asthma or obesity), and 
those with severe illness and poor general as well as 
mental health [83–88]. Patients with no or moderate 
symptoms at the time of acute infection are also at risk [89]. 
This syndrome is a multisystem disorder that can affect 
multiple body organs (e.g., the brain, skin, heart, kidney, 
lungs, etc.) characterized by different signs and symptoms 

(as summarized in Figure 5) [90,91]. While it is not clear 
how this syndrome is triggered, (1) viral-induced invasion 
and autoimmunity, (2) impaired immunometabolism, (3) 
immune exhaustion, (4) viral antigen persistence, (5) altered 
microbiome, (6) reactivation of latent viruses, and (7) increases 
and/or decreases in the renin-angiotensin system have been 
described as mechanisms that are likely involved in the 
pathophysiology of long COVID [92,93]. 

Prevention 

Primary Prevention and Protection 
To mitigate the virus spread, prevent SARS-CoV-2 transmission, 
and end the current pandemic, a set of personal, household, 
and community practices are recommended as chain-
breaking measures, along with public immunization as the 
most effective strategy in response to viral pandemics. These 
include (1) physical and social distancing as general advice 
and an effective non-pharmaceutical intervention at both 
the individual and community levels, as manifested by school 
closures, workplace measures, public transport restrictions, 
and stay-at-home recommendations [94]; (2) changing social 
greetings (e.g., handshaking, kissing, and hugging) and face-
touching behaviors [95]; (3) personal hygiene by regular 
handwashing with water and proper detergent like soap 

 Gastritis
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 Weight loss
 Nausea/vomiting
 Abdominal pain
 Loss of appetite

 Tremors
 Dizziness
 Headache
 Depression
 Anxiety
 Memory loss
 Loss of smell and altered taste
 Sleep disorders
 Memory disorders
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Figure 5. Long-term effects of coronavirus disease 2019. 
Created with the help of https://smart.servier.com/). Based on [90,91]. 
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(at least 40–60 seconds) or sanitizing one’s hands using 
alcohol-based sanitizers (62%–71%) for an adequate time 
if washing is not possible [96]; (4) employing sanitization 
procedures for commonly shared objects and touched areas 
by using ultraviolet irradiation or effective disinfectants 
and chemical compounds to inactivate the landed virus on 
physical surfaces [96]; and (5) self-protection using personal 
protective equipment. In this regard, wearing a well-fitted 
N95, medical, or even homemade mask in compliance with 
design standards reduces the risk of respiratory emissions, 
protects against virus exposure, and subsequently from 
being infected in high-density are where being within close 
contact with others is difficult to avoid [97]. 

For healthcare workers who are at the front line in healthcare 
settings, there are additional recommendations to take care 
of themselves and be safe against viral transmission. Although 
respiratory protection (wearing disposable and well-fitting 
facial masks [reported to be light, comfortable to wear, and 
easy to remove] and well-covered facial shields [reported 
to involve less skin irritation, and easy to breathe through] 
to block expelled virus-containing respiratory secretions) 
is highly recommended, eye protection (in addition to other 
required personal protective equipment) also needs to be 
carefully considered to limit the risk of viral transmission 
through the ocular mucous membranes in direct visits and 
care [98,99]. For this goal, facial shields as an effective barrier 
may offer a level of protection for the eyes, nose, mouth, 
and face; however, they might not be welcomed by some 
workers. Although goggles are not comfortable to wear for 
hours in daily practice and may interfere with vision, they 
can be an option to protect the eyes against contamination 
via droplets and/or splashes [100]. Healthcare workers are 
also required to wear protective long-sleeved gowns to 
cover exposed body parts against infected biofluids (i.e., 
respiratory secretions) and disposable medical gloves (from 
entry to exit of the patient’s room) to keep their hands clean 
and avoid virus spread and self-contamination; however, 
skin irritation (i.e., rash, itching, and dry skin) are expected 
in some workers [101–103].  

Vaccine, Vaccination, and Herd Immunity  
To end the current viral outbreak, similar to previously 
reported outbreaks caused by infectious viruses, the 
development of prophylactic vaccines and subsequently 
public immunization on a large scale is an urgent priority 
for all at-risk and affected nations, sub-nations, and 
territories. Since the start of the recent outbreak, many 
institutions and companies have been working on both 
conventional and novel technological innovations using the 
whole virus or its functional components (e.g., the S protein) 

to make attenuated and inactivated virus vaccines, viral-
vector vaccines, protein subunit vaccines, virus-like particle 
vaccines, and nucleic acid-based vaccines in a competitive 
environment, aiming to achieve the most desirable and 
broadly protective vaccines with all included standards such 
as high quality, favorable safety, and high efficacy at disease 
prevention for use in those who are at risk of viral infection 
[104]. To reach this goal, different SARS-CoV-2 proteins 
(mostly the viral spike protein) were targeted by recent 
efforts to find and test the best viral component for vaccine 
research [104]. As of September 19, 2022, 47 vaccines made 
by different platforms have been approved and used by 201 
countries based on the decisions of national authorities 
and regulatory agencies; however, these vaccines are still 
clinically monitored under different trials in different 
countries to confirm their safety and efficacy (https://
covid19.trackvaccines.org/). The most welcomed platforms 
offering a high grade of protection in vaccine receivers are 
BNT162b2 (an RNA-based vaccine) by Pfizer–BioNTech 
(efficacy, 95.0%), mRNA-1273 by Moderna (efficacy, 94.1%), 
and Sputnik V (adenovirus-based vaccine) by the Gamaleya 
Institute (efficacy, 91.6%) [105]. The following vaccines have 
also been tested in trials for use in humans, showing a 
lesser degree of protection: BBIBP-CorV (inactivated virus 
vaccine) by Sinopharm (efficacy, 79.34%), Covaxin (whole-
virion inactivated vaccine) by Bharat Biotech (efficacy, 
81.0%), Ad26.COV2.S (recombinant vaccine/adenovirus 
serotype 26 [Ad26]) by Johnson & Johnson (efficacy, 72.0%) 
and AZD1222 (recombinant vaccine) by Oxford/AstraZeneca 
(efficacy, 70.4%) [105]. For administration, almost all these 
vaccines are delivered by intramuscular injection into the 
muscles in 1 to 2 injections based on the type of vaccine 
and on a certain timetable, with the second injection 
occurring about 1 month after the first injection in almost 
all vaccines [105]. Generally, the safety of these vaccines is 
favorable, and most volunteers who were immunized by 
these vaccines had no complaints of adverse and serious 
reactions; however, pain and tenderness, fever, headache, 
fatigue, and nausea are common in some vaccinated 
individuals [106]. In general, the storage, handling, and 
transportation of almost all developed vaccines are 
challenging; hence, controlled conditions (2°C–8°C for most 
vaccines for a short period) are essential to maintain the 
vaccines intact and effective [107,108]. 

While mass vaccination programs are strongly recommended 
in this complicated situation to immunize people against 
viral infection (both symptomatic and even asymptomatic 
infections) and to prevent viral transmission, hospitalization, 
and death, herd immunity may not be reached even after 
natural infection [109,110]. At this time, there are some 
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challenges ahead that complicate the estimation of the herd 
immunity threshold. Inequalities in vaccine distribution 
and coverage are a major concern, since these gaps allow 
viruses to spread worldwide, especially in low- and middle-
income countries with vaccination rates < 10% [111,112]. 
In addition, herd immunity remains difficult to achieve in 
societies where a large proportion of unvaccinated people 
have concerns about vaccine safety and necessity [109]. It 
also should be noted that the immune responses offered 
by different vaccine platforms are variable in duration, 
and vaccines differ from each other in terms of efficacy or 
effectiveness [113]. Additionally, as mentioned in section 
2, SARS-CoV-2 has different strains; therefore, infection 
with one variant may not trigger long-lasting immunity to 
protect against infection with other variants [108]. 

Conclusion 

After about 2 and a half years of struggles, the current SARS-
CoV-2 pandemic is still a matter of concern as the virus 
tends to continue to genetically evolve into different variants, 
globally spread with a rapid distribution among human 
populations, and infect new cases among those who are not 
immune or do not follow the policies and recommended 
guidelines on the disease prevention. This virus is not the 
first emerging human CoV, but it is the most challenging 
strain, with a high degree of infectiousness and a high 
interhuman transmission rate. Although dozens of effective 
vaccines have been designed and are now available to use 
for public immunization, personal protection by taking 
appropriate precautions and following relevant guidance 
of the local health authorities are also essential to stop 
viral transmission and end the global outbreak. With little 
knowledge about the behavior of the virus, which seems to 
be the tip of the iceberg, intensive studies are recommended 
to comprehensively understand and find answers to 
open questions regarding the original, epidemiological, 
pathophysiological, and clinical aspects of SARS-CoV-2 and 
its associated disease in the near future and to design and 
develop new and more effective preventive and therapeutic 
interventions aiming to return the current complicated 
situation to normal. 
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